Photosynthesis - and what do plants do at night?

Did this thread help you to understand plants and their growth better?

  • Yes

    Votes: 2 100.0%
  • No

    Votes: 0 0.0%
  • Too in depth, I'm confused

    Votes: 0 0.0%

  • Total voters
    2

JM

Regenerative Ag Student For Life
Joined
Jan 2, 2011
Messages
10,782
Reputation
1,610
Reaction score
6,248
Points
0
Website
www.youtube.com
  • This is already an article on the homepage here. It's often difficult for most users to find and we've had discussions and times I myself couldn't seem to locate it. So to better educate you, I've put it in thread form. :smokeit:
  • Photosynthesis
    Photosynthesis is the process of converting light energy to chemical energy and storing it in the bonds of sugar. This process occurs in plants and some algae (Kingdom Protista). Plants need only light energy, CO2, and H2O to make sugar. The process of photosynthesis takes place in the chloroplasts, specifically using chlorophyll, the green pigment involved in photosynthesis.
    leaf-xs.jpg
    Photosynthesis takes place primarily in plant leaves, and little to none occurs in stems, etc. The parts of a typical leaf include the upper and lower epidermis, the mesophyll, the vascular bundle(s) (veins), and the stomates. The upper and lower epidermal cells do not have chloroplasts, thus photosynthesis does not occur there. They serve primarily as protection for the rest of the leaf. The stomates are holes which occur primarily in the lower epidermis and are for air exchange: they let CO2 in and O2 out. The vascular bundles or veins in a leaf are part of the plant's transportation system, moving water and nutrients around the plant as needed. The mesophyll cells have chloroplasts and this is where photosynthesis occurs.


    chloroplast.jpg
    As you hopefully recall, the parts of a chloroplast include the outer and inner membranes, intermembrane space, stroma, and thylakoids stacked in grana. The chlorophyll is built into the membranes of the thylakoids.
    Chlorophyll looks green because it absorbs red and blue light, making these colors unavailable to be seen by our eyes. It is the green light which is NOT absorbed that finally reaches our eyes, making chlorophyll appear green. However, it is the energy from the red and blue light that are absorbed that is, thereby, able to be used to do photosynthesis. The green light we can see is not/cannot be absorbed by the plant, and thus cannot be used to do photosynthesis.
    The overall chemical reaction involved in photosynthesis is: 6CO2 + 6H2O (+ light energy)
    rt%20arrow.gif
    C6H12O6 + 6O2. This is the source of the O2 we breathe, and thus, a significant factor in the concerns about deforestation.





    There are two parts to photosynthesis:
    The light reaction happens in the thylakoid membrane and converts light energy to chemical energy. This chemical reaction must, therefore, take place in the light. Chlorophyll and several other pigments such as beta-carotene are organized in clusters in the thylakoid membrane and are involved in the light reaction. Each of these differently-colored pigments can absorb a slightly different color of light and pass its energy to the central chlorphyll molecule to do photosynthesis. The central part of the chemical structure of a chlorophyll molecule is a porphyrin ring, which consists of several fused rings of carbon and nitrogen with a magnesium ion in the center. The energy harvested via the light reaction is stored by forming a chemical called ATP (adenosine triphosphate), a compound used by cells for energy storage. This chemical is made of the nucleotide adenine bonded to a ribose sugar, and that is bonded to three phosphate groups. This molecule is very similar to the building blocks for our DNA.
    atp.jpg

    The dark reaction takes place in the stroma within the chloroplast, and converts CO2 to sugar. This reaction doesn't directly need light in order to occur, but it does need the products of the light reaction (ATP and another chemical called NADPH). The dark reaction involves a cycle called the Calvin cycle in which CO2 and energy from ATP are used to form sugar. Actually, notice that the first product of photosynthesis is a three-carbon compound called glyceraldehyde 3-phosphate. Almost immediately, two of these join to form a glucose molecule.
    Most plants put CO2 directly into the Calvin cycle. Thus the first stable organic compound formed is the glyceraldehyde 3-phosphate. Since that molecule contains three carbon atoms, these plants are called C3 plants. For all plants, hot summer weather increases the amount of water that evaporates from the plant. Plants lessen the amount of water that evaporates by keeping their stomates closed during hot, dry weather. Unfortunately, this means that once the CO2 in their leaves reaches a low level, they must stop doing photosynthesis. Even if there is a tiny bit of CO2 left, the enzymes used to grab it and put it into the Calvin cycle just don't have enough CO2 to use. Typically the grass in our yards just turns brown and goes dormant. Some plants like crabgrass, corn, and sugar cane have a special modification to conserve water. These plants capture CO2 in a different way: they do an extra step first, before doing the Calvin cycle. These plants have a special enzyme that can work better, even at very low CO2 levels, to grab CO2 and turn it first into oxaloacetate, which contains four carbons. Thus, these plants are called C4 plants. The CO2 is then released from the oxaloacetate and put into the Calvin cycle. This is why crabgrass can stay green and keep growing when all the rest of your grass is dried up and brown.
    There is yet another strategy to cope with very hot, dry, desert weather and conserve water. Some plants (for example, cacti and pineapple) that live in extremely hot, dry areas like deserts, can only safely open their stomates at night when the weather is cool. Thus, there is no chance for them to get the CO2 needed for the dark reaction during the daytime. At night when they can open their stomates and take in CO2, these plants incorporate the CO2 into various organic compounds to store it. In the daytime, when the light reaction is occurring and ATP is available (but the stomates must remain closed), they take the CO2 from these organic compounds and put it into the Calvin cycle. These plants are called CAM plants, which stands for crassulacean acid metabolism after the plant family, Crassulaceae (which includes the garden plant Sedum) where this process was first discovered.
 
Last edited:
Great read did not run across till now. A lot of things I did not know, and a few things I always wondered.. Another good one from JM
 
Great read very interesting jm Is there anyway you could link the coloured text to their defernition for people that are not sure of the words :eek:
 
Good stuff!
Now to determine if my canna is C3 or C4 or whatever. It seems the dark cycle / light cycle is important and it's importance in determining the proper temperature and light/dark periods.
Already some of the ramification are immediately apparent. If temp can shut down the stoma due to heat in order to preserve H2O then they cannot respire, not enough CO2, photosynthesis suffers and thereby production of our desired resins and things drops. Hmmmm... Not so simple I am sure but a good start.
 
great read.there is a lot of information available on photosynthesis and chlorophyll but this seems like a classic textbook presentation. very professional. thanks for posting the information. I am sure that your aware that plants use light for things other than sugar production. have you considered posting articles on these other uses? you seem to be a student in this field
 
have you considered posting articles on these other uses? you seem to be a student in this field

there WERE many aarticles... some seem to have dissappeared... :shrug:

a student of nature for sure... what a great teacher!
 
Back
Top